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Fluidity and Volume. 
Attention2 has been repeatedly called to the intimate relationship which 

exists between the fluidity of a liquid and its volume. Batschinski8 has 
recently given this relationship quantitative expression. According to 
him 

Tf1 = c/v — W 

where JJ is the viscosity of the liquid, v the specific volume, and c and w 
are characteristic constants for the given liquid, In terms of the fluidity 
<p = I/IJ, we have 

V = W + Cip ( l ) 

or, the volume is a linear function of the fluidity, w being the limiting 
volume toward which the volume approaches as the fluidity approaches 
zero. If, following Batschinski, we call v — w the free volume, the law may 
be stated in the very simple form, the fluidity of a liquid is directly propor
tional to its free volume. Batschinski has found remarkable agreement 
between the observed and calculated viscosities for a large number of 
liquids, it apparently making no difference whether the change of volume 
is produced by altering the temperature or the pressure. For a range of 
temperature extending from o° to the boiling point, or even beyond the 
ordinary boiling point, the differences seldom exceed 1%, except with 
associated substances such as the alcohols, which are exceptional, here as 
elsewhere. 

The above law is really an extension of the law already given,4 expressing 
the relation between the fluidity of a suspension and its volume concen
tration. The volume concentration of the medium, c2, in which the fluidity 
of the suspension becomes zero, corresponds to the volume where the 
fluidity becomes zero in pure liquids. If W2 represents any volume con
centration of the medium, then W2—c2 corresponds to the free volume, 

1 For earlier papers of the author on this general subject (cf. Phys. Rev., 35, 407 
(1912)); [2] I, 96 (1913); Z. physik. Chem., 83, 641 (1913); Trans. Chem. Soc, 103, 
959 (1913); / . Phys. Chem., 18, 157 (1914); / . Ind. Eng. Chem., 6, 233 (1914). 

2 Am. Chem. J., 35, 215 (1906); 43, 290 (1910); 45, 268 et seq. (1911); Z. physik. 
Chem., 83, 655 (1913). 

s Ann. de la Soc. a"encouragement de sciences experimentales et des leurs applications 
du nom de Christophe Ledenzoff, Suppl., 3 (1913); Z. physik. Chem., 84, 643 (1913). 

4 Phys. Rev., 35, 421, et seq. (1912). 
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and the fluidity of the suspension is directly proportional to the free vol
ume. From equation (9)1 of an earlier paper by the author we get* 

<p = (W2 Ci)(p2/Ci ( 2 ) 

which is evidently a more explicit form of equation (1) above. In sus
pensions the medium has a finite fluidity, hence the fluidity of the suspen
sion <p cannot exceed the fluidity of the medium <&. Pure liquids may be re
garded as suspensions in space, of infinite fluidity, so that there is apparently 
no limit to the fluidity which may be obtained by indefinitely increasing the 
volume. A further point of interest in this connection, is the fact that 
the concentration of its zero fluidity in a suspension, is independent of the 
temperature or of the nature of the medium. 

The Equation of State. 
If, in van der Waals' equation, 

(p + a/v%Xv — b) = RT, 
we substitute for the volume its value in term3 of w + c<p, we obtain a for
mula in which the fluidity, temperature and pressure are variables. Since, 
however, the pressure is constant under the usual conditions of viscosity 
measurement, this relation becomes 

T = A* + C + B/e + D . — B / ( * + D), (3) 
in which A, B, C, D and E are constants. Over any ordinary range of 
temperature, this formula may be simplified. In fact, the author has al
ready shown2 that the formula 

T = K<p + C — B/(p + D) (4) 
will reproduce the observed fluidities of all the liquids tested with very 
great accuracy. For all but the most highly associated liquids, or over a 
very wide range of temperature, the formula may be still further sim
plified to 

T = A? + C - B/*> (5) 
and satisfactory results obtained. Thus for seventy substances, the 
average deviation between the observed and calculated values of the 
absolute temperature is only 0.09%. For a highly associated substance 
like water, the average deviation is 0.17%, but with Formula (4) it becomes 
only 0.01%. 

In a similar manner one obtains a formula for the pressure in terms of 
the fluidity 

p = a T / ( * + /3) — y/fo + S)2. (6) 
When the fluidity or the temperature is very great, the second term of 
the right-hand member becomes negligible and the formula represents 
an equilateral hyperbola. Large fluidities and high temperatures presum-

1 Phys. Rev., 35, 423 (1912). 
2 Z. physik. Chem., 66, 251 (1909). 
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ably belong to the gaseous state and, as van der Waals' equation applies 
best to gases where the volume and temperature are great, we might look 
for a similar fluidity relation. That any such expectation is doomed to 
disappointment is proved by Clerk Maxwell's observation that the fluidity 
of a gas over a short range of pressures and temperatures is independent 
of the pressure, which has been repeatedly confirmed. Thus Equation 
(1) applies to liquids but certainly not to rarefied gases. The cause of 
this interesting peculiarity may well engage our attention next. 

4 5* 8 S 1 IO 
Cp X 20" 

Fig. t.—Pressure-fluidity curves of carbon dioxide. 

In Fig. i are drawn the pressure-fluidity curves for carbon dioxide 
for the temperatures measured by Phillips.1 The curves are drawn as 

1 Proc. Roy. Soc. (London), 87A, 48 (1912). 
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continuous lines between the observed points. The broken lines have been 
added for diagrammatic purposes. The left half of the figure, which 
corresponds to low fluidity and temperature, presents a striking similarity 
to the familiar pressure-volume diagram. At the highest pressures, the 
fluidity is not greatly affected by a change in the pressure, e. g., at 32 ° 
and a pressure of 120 atmospheres, a lowering of the pressure by four 
atmospheres causes an increase in the fluidity of less than 4%. At a 
lower pressure the fluidity is extremely susceptible to changes in pressure, 
a lowering of the pressure by four atmospheres at 76 atmospheres, causing 
an increase in the fluidity of a full 100%. Both the gaseous and liquid 
phases are present in the region inside of the Curve kbmcl. The right side 
of the figure is quite different from the familiar pressure-volume diagram. 
Instead of the fluidity being highly susceptible to changes in pressure, 
it is but slightly affected, e. g., at 32° and 50 atmospheres pressure, a lower
ing of the pressure by four atmospheres causes only a 10% increase in the 
fluidity. Let us now consider carbon dioxide at 20° which is well below 
the critical value. At high pressures the fluidity increases linearly from 
a to b; there is then a sudden increase in the fluidity from 1500 to 5300 
C. G. S. units, as the substance passes from the liquid to the gaseous con
dition. We should expect the fluidity to continue to increase as the pres
sure is further lowered, giving the Curve cd', but the curve actually ob
tained is cd. It is generally true that the fluidity of liquids increases with 
the temperature, while, on the other hand, the fluidity of gases decreases 
with the temperature, hence the pressure-fluidity curves for different 
temperatures must cross each other. It is interesting to note that the 
figure shows, that not only is this true, but, when the temperatures are suffi
ciently high, the curves all tend to pass through a particular point n; and for 
lower temperatures, the curves tend to intersect each other on the Curve ncl. 

The fluidity of carbon dioxide at atmospheric pressure for o0, 40 ° and 
100 °, as obtained fron the Tabellen of Landolt, Bornstein and Meyerhoffer, 
are plotted at the points e,f, and g, respectively. If gnh is taken to represent 
the hypothetical pressure-fluidity curve of carbon dioxide at 100 °, it is 
evident that, for this temperature, Maxwell's law holds perfectly so that 
the fluidity is independent of the pressure. But is it equally evident that 
it would hold strictly for no other temperature. At 0° the fluidity curve 
of gaseous carbon dioxide is approximately pe, while for the temperature 
of the ordinary boiling point of carbon dioxide the pressure-fluidity curve 
would apparently be Iq, and the law breaks down entirely. What would 
happen if the temperature were raised far above ioo° would be very inter
esting to learn, but the data are not available at present. 

The Nature of the Two Causes of Viscous Resistance. 
That the pressure-fluidity curves do not follow an equation of the van 

der Waals type as the fluidity increases, may be due to the appearance 
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of a new cause of resistance. We must therefore now inquire more 
particularly into the nature of viscous resistance. It has long been 
realized that a cause of viscous resistance in gases arises from the 
diffusion of the particles of layers with high translational velocity into 
layers whose translational velocity is lower, and vice versa. According to 
this explanation the loss of translational velocity must increase with the 
temperature, which accords with the fact that the fluidity of a gas 
decreases as the temperature is raised. 

But in liquids the fluidity increases as the temperature is raised and it 
appears that there is a second cause of viscous resistance which has been 
repeatedly attributed to the attraction between the molecules. Bat-
schinski1 gives this conception expression in the following terms: "In gases, 
the properties which depend upon the reciprocal attraction of the mole
cules manifest themselves only slightly, whereas with liquids, on the con
trary, these properties are of prime importance. If we may think of two 
parallel layers of the liquid as of two rows of men, the men moving in the 
place of molecules, we must require these men to take hold of their nearest 
neighbors and to hold them for a time." 

This explanation seems to the present author to be inadequate for the 
following reasons: As a particle A comes within the range of attraction 
of a particle B in an adjacent layer supposed to be moving more slowly, 
the particle A will be accelerated and only after passing B will the retar
dation take place. I see no reason why these two actions should not exactly 
neutralize each other, in which case none of the translational energy will 
be changed into heat. But, perhaps it would be urged that the retarding 
influence is more like chemical combination, since the particles lay hold 
on each other and, in the words of Batschinski, "wahrend einiger Zeit 
festhalten." If the particles of the liquid grasp and hold each other, a 
kind of association must result which should be detected by some physical 
method, and non-associated substances ought not to show any viscosity 
at all. As a matter of fact, not only do all liquids have viscosity, but 
mercury, which is usually regarded as non-associated, has a lower fluidity 
than many highly associated substances such as water and alcohol. This 
objection may be avoided by assuming that this grasping and holding of 
the particles is proportional to the rate of shear of the liquid, so that it 
is zero when the liquid is at rest; but, since the molecules are always in 
rapid vibrational motion, it is difficult to see how the small translational 
motion would affect the attraction in a way to produce the result which we 
observe. 

In order to get a clearer idea of the nature of the two causes of viscous 
resistance to flow, let A and B in Fig. 2 represent two parallel planes at 
a constant distance apart, the space between being filled with the viscous 

1 Loc. cit. 
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substance. For the simplest case, suppose that the substance is a gas a t 
so low a pressure that the distance from A to B is small in comparison 

A ^ with the mean molecular free path. 
""""""^"~~"""""""~~~"——~~~"~~~~~ Let the surface A be supposed to be 
* moving to the right with a constant 

• velocity in respect to the surface B 
• which may, for convenience only, be 

* conceived to be at rest. If the sur-
JJ faces A and B were perfectly smooth 
^ s . 2- and unyielding and the particles of 

fluid perfectly elastic spheres, we would not have a model of viscous flow; 
for as the particles collided with these surfaces, the angle of rebound would 
in each case be equal to the angle of impingement and since there is conser
vation of momentum, no translational motion could be transmitted to-
or from the walls, i. e., the "slipping" would apparently in this case be 
perfect. In order to obtain a model of viscous flow, we are therefore 
obliged to make some assumption, and the simplest and most probable 
one is that the surfaces A and B are not perfectly smooth. In view of the 
known discontinuity of matter, the least degree of roughness that we could 
well assume, is that the surface is made up of equal spheres, all of whose 
centers lie in the same plane and as closely packed together as possible. 
That there is a greater degree of roughness in all ordinary surfaces is prob
able, but it* suffices for our present purposes to show that this simple 
assumption in regard to the nature of the surfaces gives a workable model 
of viscous flow. In a model of viscous flow it is necesssry for the mole
cules striking the surface A to be given a component of velocity in the 
direction of the viscous flow. We shall refer to this as translational velocity 
in contradistinction from the disordered vibrational velocity of the mole
cules. The resultant translational velocity of the molecules is evidently 
proportional to the rate of efflux, while the resultant vibrational velocity 
is zero. I t is further necessary that as the molecules strike the surface 
B, the translational velocity received at A should be transformed into 
vibrational velocity or heat, so that any resultant translational velocity 
would disappear in a short time were it not continually supplied at the 
surface A. 

That the model described above meets these requirements depends 
upon the truth of the following theorem: When a series of elastic par
ticles strike a rough surface, the resultant component of velocity along the 
surface will be diminished. That this is true must now be made evident. 
Let M, N, and P, in Fig. 3 represent the section through the centers of 
three of the greatly magnified spheres supposed to make up the surfaces 
in Fig. 2. Suppose that a small particle were to strike such a surface at 
any acute angle 0. It is evident that if such a particle is to strike the 
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sphere IV in the plane of the paper, its possible paths all lie between A 
and G. By drawing the directions of the particle before and after col
lision, assuming that the angle of rebound at any point of the surface is 
equal to the angle of impingement, we find that for possible paths between 
B and D the average resultant velocity of rebound is exactly opposite in 
direction, although diminished in amount. For paths between A and B 
a particle would collide with M on rebounding from N but the component 

M N P 
Fig. 3.—A diagram illustrating how translational motion becomes changed into 

vibrational motion by striking a rough surface. 

of the velocity in the direction NP is diminished. Also for paths between 
D and E, as well as between F and G, the component of the velocity in 
the direction NP will be diminished. Only between E and F is the com
ponent in the direction of flow greater after collision than before. But 
the distance EF becomes zero when 6 = 90 ° and it has its maximum value 
when 6 = 0°, i. e., when the translational motion is zero. Since all of 
the paths between A and G are equally likely, it follows that for this sec
tion at least, the average translational velocity of the small particles is 
diminished by collision irrespective of the size of the angle or of the 
velocity of the particle, and it can be easily shown that the same is true 
even if the particle is of considerable size. The same must be true a 
fortiori for sections other than the one passing through the centers of the 
spheres, for then there must, after collision, be a component velocity at 
right angles to the plane of the paper and therefore to the direction of flow. 
The section would be similar to the one given except that the circles would 
not touch, the spaces between them corresponding to the pores in which 
the translational velocity is quite certainly changed to disordered motion. 
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It follows as a corollary to the above theorem that a fluid made up of 
elastic particles which is in contact with a rough surface, tends to have a 
translational velocity identical with that of the surface. Thus the theorem 
explains how the molecules receive a velocity as they strike the surface 
A in Fig. 2 and also how that translational velocity becomes transformed 
into vibrational velocity at the surface B. If the motion of A were sud
denly stopped, it follows that all of the flow must cease in a time which, 
for gases with particles having a velocity expressed in kilometers per 
second, must be inappreciable. It is to be particularly noted that collisions 
between molecules of a gas are not necessary for this type of viscous re
sistance. This resistance to flow is caused solely by the diffusion of the 
molecules, and we shall refer to this type of viscous resistance as "dif-
fusional viscosity." 

The Viscosity of a Rarefied Gas and Slipping. 
Further it is important to observe that for the case under consideration 

where the molecular mean free path is large in comparison with the dis
tance between the surfaces A and B, the viscous resistance must be di
rectly proportional to the number of molecules striking a unit area of the 
surface in a unit of time. The viscous resistance of a rarefied gas is therefore 
directly proportional to the density, i. e., it is directly proportional to the 
pressure and inversely proportional to the volume, provided that the tem
perature and the mass of the molecules remain constant. This is quite dif
ferent from the law of Maxwell for gases at ordinary pressures. Such a 
falling off of the viscous resistance at very low pressure has actually been 
observed by Kundt and Warburg,1 but they attributed it to slipping.2 

Meyer3 has pointed out that this so-called "slipping" is directly proportional 
1 Ann. Physik und Chem., 156, 177 (1875). 
2 By the term "slipping," one refers to the movement of the layer of liquid which is 

in immediate contact with the boundary, over which the viscous flow is taking place. 
Ordinarily it is assumed that this layer of the fluid is stationary in respect to the 
boundary and therefore the slipping is zero. But an active discussion of slipping was 
started when Helmholtz and Piotrowski (Wien. Ber., 40 (2a) 607 (1868)) announced 
that they had found a very perceptible amount of slipping by vibrating a hollow, 
polished metal sphere, which was filled with liquid and suspended bifilarly. However, 
the work of Poiseuille (Mem. present, par divers savants a I' academie Roy. des Science 
de V Inst, de France, 9, 333 (1836)), Warburg {Pogg. Ann., 140, 367 (1870)), Wetham 
(Proc. Roy. Soc, 48, 225 (1890)), Couette (Ann. Mm. phys., [6] 21, 433 (1890)), and 
Ladenburg (Ann. Phys., [4] 27, 137 (1908)) seems to prove that slipping never occurs 
between a liquid and a solid and regardless of whether the liquid wets the solid or not. 
Ladenburg repeated the work of Helmholtz and Piotrowski and found that they had 
overlooked a point in the theory so that even in their experiments he thinks that the 
slipping is negligible. Similarly it is admitted that slipping does not occur in gases 
at ordinary pressures. It is therefore at last only at pressures of a millimeter of 
mercury or less that slipping is still resorted to in order to explain the facts of 
experiment. 

3 Kinetic theory of gases. 
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to the free-path which is inversely proportional to the density. Hence 
the observed results are exactly in accord with the above law and we do 
not see that there is any evidence for any slipping at all. 

The effect of temperature upon the viscosity of a rarefied gas may now 
be deduced. The velocity of the molecules is proportional to the square 
root of the absolute temperature, but if a molecule loses its translational 
velocity when it collides with the surface B and similarly receives the trans
lational velocity of the moving surface when it collides with A, then the 
absolute amount of the vibrational velocity of the molecules will not effect 
the transfer of translational momentum at any given collision, except 
as it will affect the number of these collisions in proportion to this velocity. 
Hence, the viscosity of a rarefied gas, at constant volume, varies directly as 
the square root of the absolute temperature, provided that the particles of the 
gas remain of uniform size. If, on the other hand, the pressure is kept con
stant, the viscous resistance must vary inversely as the square root of the ab
solute temperature. We are not aware that there are at present any ex
perimental facts to justify this conclusion which is so contrary to the be
havior of gases at ordinary pressures, where the viscous resistance is di
rectly proportional to some power of the absolute temperatures. The 
validity of this law depends upon the assumption that a molecule on col
lision assumes the translational velocity of the surface. Any other 
assumption would require "slipping" to occur, hence the testing out of 
the above law ought to afford valuable evidence upon the relative rough
ness or smoothness of different surfaces. 

A change in the mass of the molecules of the gas has an effect upon the 
viscous resistance. At a given temperature and pressure the kinetic theory 
requires that the velocity is inversely proportional to the square root of the 
mass. The effect of an increase in the mass will be to increase the transfer 
of momentum in proportion to the mass, but the decrease in velocity 
will also decrease the viscous resistance inversely in proportion to the 
square root of the mass. Therefore, the viscous resistance of a rarefied 
gas, at a constant temperature and pressure, is directly proportional to the 
square root of the molecular weight, but is independent of the other physical 
or chemical properties. 

The viscous resistance of a rarefied gas may be calculated as follows: 
Let u be the translational velocity of the surface A in respect to the sur
face B, the distance between them being s, and let N be the number of 
molecules per cubic centimeter, whose molecular weight is M, the density 
of the gas being p; and let the average velocity of the molecules be U. 
The momentum removed from A at each collision is Mu. The number 
of molecules in a column of unit cross-section from A to B is Ns and they 
will reach the surface A at the average rate of 17/65, hence the total force 
per square centimeter required to maintain the motion of A is 
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MuNu/6 = Uu/6p 
The viscosity, which is the force required when u = i and S= i, is 
therefore 

V = P U / 6 5 (7) 

which may be put into the form 

* - &£. » 
SUVM 

Where £ is the pressure, v the volume, T the absolute temperature, and 
K a constant. 

The most interesting and surprising thing about the above formula is 
its requirement that the viscosity of a rarefied gas must depend upon the 
dimensions of the apparatus used, the viscous resistance increasing as the 
space between the two surfaces is reduced. 

Collisional Viscosity. 
For the opposite extreme, we may conceive of a very viscous liquid, 

two layers of which, C and D, are shown in Fig. 4. The appearance is the 
si v, same as if a small portion taken from 

Fig. 2 had been greatly magnified, so that 
ithe molecules appear as disks instead of 
points, except that the molecular concen-

\^y^s^ tration is greatly increased. The effect 
1 of this increased concentration is to in
definitely decrease the molecular mean 

•^ free path, so that the diffusional viscous 
lg' 4 ' resistance is negligible, but the actual 

volumes of the molecules are comparable with the spaces which they occupy 
and collisions are immensely more frequent. 

Since the layer C is nearer the surface A (not shown) than is D, it must 
move more rapidly than the layer D, according to the fundamental law of 
viscous flow discovered by Newton. The molecules of this layer must there
fore overtake the molecules of D and in colliding with them tend to impart 
translational motion. Thus momentum passes through successive layers 
from A to B, and if B is free to move, it will take up the same velocity as 
A, all of the molecules taking part in the translational drift toward the 
right. But the surface B is assumed to be at rest, hence the layer C must 
have a velocity toward the right which is permanently higher than that 
of D by a fixed amount and the molecules of C. must continue to overtake 
the molecules of D and in so doing to impart momentum to them. But 
in collisions between the molecules of one layer with the molecules of 
another layer, we have already shown in connection with Fig. 3 that trans
lational motion is continually being transformed into disordered motion. 
Hence we have here a true model of viscous flow, in which translational 

nO: 
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motion is continually being transformed into heat. In the extreme case, 
the effect of diffusion may be neglected, the viscous resistance being due 
solely to the collisions produced by the molecules of one layer overtaking 
those of another layer of smaller translational velocity. We shall refer 
to this as "collisional viscosity." 

From the model described above we believe that it is possible to deduce 
the effects of changes in concentration, pressure, temperature, and size 
of the molecules upon this type of viscous resistance. Without attempt
ing an elaborate proof at this time, it is probably clear that the number of 
collisions of the particles of one layer with those of another layer, due to 
their difference in translational velocity, will be directly proportional to 
the number of particles in each layer, i. e., to the concentration. I t will 
also be directly proportional to the rate of shear between the layers. 
Temperature and pressure can effect this resistance as they affect the con
centration, but not otherwise. An increase in the temperature increases 
the vibratory motion of the molecules but it evidently does not affect the 
rate at which the molecules of one layer overtake the molecules of an ad
jacent layer which is moving more slowly. Increasing the mass of the 
particles would increase the momentum of the particles and hence the, 
viscous resistance, but we must remember that with the increase in mass 
there is generally an alteration in the volume. Now it is evident that the 
collisional viscous resistance depends both upon the actual volume of the 
particles and upon the volumes which these particles occupy. If the 
particles are to be thought of as points, there could be no collisions and 
therefore no collisional resistance to flow. On the other hand, if the volume 
of the particles themselves could be made exactly equal to the space 
which they occupy, collisions would be most rapid and the collisional 
resistance would be a maximum. 

The fact that in unassociated liquids the fluidity is directly propor
tional to the free volume, as stated above, seems to indicate that col
lisional viscosity is almost entirely responsible for the viscosity phenomena 
in ordinary liquids. It is also clear why associated liquids are exceptional. 
The breaking down of association, as for example by heating, would cer
tainly furnish cause for a change in the collisional resistance, since dissocia
tion is usually accompanied by a change in volume, which may be either 
in the actual volume of the particles or in the space which they occupy or 
both. 

The Mixed Regime. 
It has been indicated that in rarefied gases viscous resistance is cer

tainly diffusional and in very viscous liquids it is probably collisional. 
In gases at ordinary temperatures and pressures the viscous resistance to 
flow is evidently the sum of the diffusional and collisional resistances. 
The total viscous resistance 77 is in every case given by the equation 



1404 BUGSNB C. BINGHAM. 

v = Vc + Vd- (9) 
In rarefied gases, the collisional resistance rjc is equal to zero and in very 
viscous liquids, the diffusional resistance may be negligible. In all other 
cases, the complete formula should be applied. The diffusional viscous 
resistance in this calculation does not follow the simple formula given for 
the model described above, in connection with Fig. 2, for the reason that 
the molecular mean free path affects the resistance in this case, since it 
affects the number of layers a molecule can pierce before it gives up its 
translational momentum. The diffusional viscous resistance is then pro
portional to the free path, which in turn is inversely proportional to the 
density. We found that in a rarefied gas the diffusional viscous resistance 
is directly proportional to the density, hence it comes about that in this 
case the diffusional resistance is independent of the pressure. This is 
the law of Maxwell, which may be formulated as follows: 

Vd = i/3pIvU(i + at)n 

where p is the density, L is the molecular mean free path, t is the tempera
ture Centigrade, and U is the mean velocity. But we have seen above 
that 

ije - c/v — w 
hence 

17 = c/v— w + 1/3 pLU(i + at)n. (10) 
Since diffusional viscosity becomes important only when the volume is 

large, we may put v — w I or i/p. We will introduce the absolute tempera
ture T, and for a first approximation assume that the exponent of T is 
unity, i. e., n = 1. This is the value deduced from the theory by Max
well, but experimentally determined viscosities give a value which is less 
than unity. But this discrepancy may conceivably be due to the col
lisional viscous resistance having been left out of account. We thus ob
tain an equation containing only three constants, which may be written 
in the form 

v— w 
v = A + BT(v - w) ( I I ) 

This equation is very simple and convenient to apply. The following 
table serves to show to what extent it may be relied upon to reproduce the 
values obtained for carbon dioxide in both the liquid and gaseous states. 

The deviations between the observed and calculated values are greatest 
in the critical zone where the experimental difficulties are the greatest. 
However, it cannot be affirmed that the agreement is within the experi
mental error, for apparently the deviation is systematic. But undoubtedly 
the agreement could have been improved by introducing another constant, 
as by giving the exponent of T in Formula (11) some other value than unity. 
It has seemed better to keep the formula in its simple form for the present. 
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TABLE I . — T H E FLUIDITY OP CARBON DIOXIDE AS CALCULATED BY MEANS OF THE 

FORMULA <p = (v—ui)/[A+BT(n—-w)] WHERE 10 = 0.841^0.0002578, AND B =4998, 

COMPARED WITH THE VALUES OBSERVED BY PHILLIPS 1 AT VARIOUS TEMPERA

TURES AND PRESSURES. 

np. Abs. Press, in atm. 

293 83 
7 2 

5 9 

5 6 

5 0 

4 0 

2 0 

I 

303 I 1 0 . 5 

1 0 4 

9 6 

9 0 

8 2 

8 0 

7 6 

7 4 

7 3 
7 2 

7 0 

6 0 

4 0 

2 0 

I 

305 120 

112 

1 0 4 

93 
87 
84 
8 0 

7 6 

7 5 

7 4 

7 0 

6 0 

4 0 

2 0 

I 

308 I I 4 - 5 

1 0 9 

9 6 

8 8 

8 5 
8 0 

75 

V. 

1.198 

1.232 

1.302 

5 . 2 6 3 

6 . 8 9 7 

1 0 . 0 0 

2 7 . 7 8 

546.4 
1.258 

1.280 

1.316 

1.346 

1-397 
1.416 

1.471 

1.506 

I - 5 3 I 

1-575 

3.484 
5 6 5 0 

1 0 . 8 7 

2 8 . 2 5 

5 6 5 . 0 

1 . 2 6 6 

1 . 2 8 7 

1 . 3 1 6 

1 - 3 7 2 

1 . 4 2 9 

i . 4 6 6 

1 - 5 2 7 

1 - 6 7 5 
1 . 8 0 2 

2 . 7 7 8 

3 . 9 2 2 

5 . 8 8 2 

1 1 . 1 1 1 

2 8 . 4 1 

5 6 8 . 1 

I . 3 2 4 

1 - 3 4 9 

1 - 4 3 7 

i - 5 3 i 

1 - 5 9 7 
2 . 0 2 4 

3 . 4 6 0 

<p obs. 

1 2 1 5 

1 2 9 7 

1 4 3 5 

5 3 7 6 

5 6 5 0 

6 0 2 4 

6 4 1 0 

6 7 5 7 

1 2 9 9 

1 3 6 4 

1 4 4 3 

1 5 5 5 
1 6 8 9 

1 7 7 0 

1 8 9 0 

2 0 2 0 

2 0 9 2 

2 1 8 3 

4 3 6 7 

5 3 4 8 

5 9 5 2 

6 2 8 9 

6 5 3 6 

1 2 6 9 

1 3 5 0 

1 4 3 9 

1 5 9 5 
1 7 0 6 

1 7 8 6 

1 8 9 4 

2 2 3 2 

2 4 6 3 

3 9 3 7 

4 6 7 3 

5 3 4 8 

5 7 1 4 

6 i 7 3 
6 4 5 2 

1 4 4 3 

1 5 1 5 
1 7 0 6 

1 9 5 7 
2 1 9 3 

2 7 7 0 

4 2 1 9 

<p calc. 

1 1 5 2 

1 2 4 1 

1 4 1 8 

4 8 9 0 

5 2 9 9 

5 7 3 4 
6 4 2 1 

6 9 0 7 

1 3 0 0 

1 3 5 5 
1 4 4 1 

1 5 1 2 

1 5 1 9 
1 6 6 8 

1 7 8 4 

1 8 5 5 
1 9 0 6 

1 9 9 2 

4 0 2 1 

4 8 8 7 

5 6 5 4 
6 0 8 6 

6 5 9 4 

1 3 1 8 

1 3 6 9 

1 4 3 9 
1 5 6 8 

1 6 9 3 

1 7 7 1 

1 8 9 4 

2 1 6 8 

2 3 7 9 
3 5 o 6 

4 2 4 0 

4 9 1 8 

5 6 4 1 
6 2 0 1 

6 5 5 3 

1 4 5 5 
1 5 1 2 

1 7 0 6 

1 8 9 6 

2 0 2 1 

2 6 9 0 

3 9 6 6 

% Differ< 

—5 
—4 
— I 

— 9 
— 6 

~ 5 
O 

+ 2 
O 

— I 

O 

— 3 
— I I 

— 6 

— 6 

— 8 

— 9 

— 9 
— 8 

— 9 

— 5 

— 3 

+ 1 
+4 
+ i 

O 

— 2 

— i 

— i 

O 

— 3 

— 3 
— 8 

— 9 
— 8 

— I 

0 

+2 
+ 1 

O 

O 

— 3 
— 8 

— 3 
— 6 

1 hoc. cit. 
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Press, in 

70 
60 
4 0 
2 0 

I 

1 1 2 

1 0 8 

IOO 

94 
85 
8 0 

7 0 

60 
40 

2 3 . 
I 

TABLE I (Continued). 

atm. v. 

4.405 
6.135 

I I .765 
28.74 

574-7 
i . 43 i 
1.466 

1-572 
1.718 

2 5 9 7 
3.436 
4 . 9 0 2 
6-536 

12 .05 
8 24.51 

578.0 

if obe. 

4673 
5618 

5747 
6i35 
6410 

1751 
1852 
2070 

2415 
3717 
4587 
5000 

5348 
5682 

5917 
6369 

Summary and Conclusions. 

tp calc . 

4425 
4943 
5642 

6135 
6487 
1686 

1759 
1965 
2221 
3302 
3920 

4553 
4964 

5585 
5987 
6385 

% Difference. 

— 5 
—12 

2 
O 

+ 1 
— 4 
— 5 
— 5 
— 8 

— 1 3 

— 1 4 

— 9 
— 7 
— 2 

+ 1 
O 

i. Attention is called to the fact that the fluidity is proportional to 
the "free volume," as it is called by Batschinski, not only in pure liquids 
and mixtures but also in suspensions of solids in liquids. 

2. Since the fluidity of a liquid is proportional to the free volume, 
an equation resembling that of van der Waals may be used to reproduce 
the fluidity data as a function of the temperature and pressure. 

3. Such a modified van der Waals' equation breaks down utterly when 
applied to gases, where a priori it might be expected to apply best. This 
discrepancy is due to the advent of an additional cause o'f viscous resist
ance in gases which does not apply in very viscous liquids. Thus the 
fluidity of a gas is invariably smaller than would be expected from the 
modified van der Waals' equation. 

4. Viscous resistance in gases originates largely in the diffusion of the 
material which carries with it translational motion, which, in turn, by 
collisions becomes transformed into disordered motion. This kind of 
resistance to motion is called "diffusional viscosity." 

5. But in viscous liquids the resistance to flow caused by diffusion is 
quite negligible. The resistance is shown to be due to the collisions of 
molecules of one layer with those of an adjacent layer moving at a slightly 
lower velocity. This transfer of momentum without a transfer of matter 
is called "collisional viscosity." 

6. The viscosity of a gas or liquid is, therefore, the sum of the dif
fusional and collisional viscosities. We thus obtain an approximate 
formula <p = (v —• w)/[A + BT (v —• w)] which can be used to reproduce 
the observed fluidities of carbon dioxide with considerable fidelity. 

7. Reasons are given for the belief that slipping does not occur even 
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in rarefied gases. The apparent viscosity of a gas as it becomes rarefied, 
decreases rapidly, which is entirely in accord with the theory. 

8. In gases at ordinary temperatures and pressures, the fluidity de
creases as the temperature is raised, but the fluidity is nearly independent 
of the pressure. Both facts indicate that diffusional viscosity is of pre
ponderating importance in gases. There is indication (cf. Fig. 1) that at 
very low temperatures the fluidity of gases is by no means independent of the 
pressure, being inversely proportional to the pressure. It is also possible that 
at very high temperatures the fluidity will increase with the pressure. 
It appears that this last has not yet been observed, but should so para
doxical a fact be discovered it would seem to offer a striking confirmation 
of the views here outlined. 

9. The fluidity of practically all liquids increases with the temperature 
and decreases with the pressure. Most liquids expand as they are heated 
or as the pressure is removed, hence we may attribute the increased fluidity 
to the decreased number of collisions. Sulfur and water are exceptional 
in their behavior, but this may be explained on the basis of association. 

10. In nearly all liquids an increase in the molecular weight causes an 
increase in the temperature required to produce a given fluidity, and this 
increase in temperature is proportional to the increase in molecular weight, 
in a given homologous series. There are exceptions to this generalization, 
such as formic and acetic acids, but the exceptions are more apparent than 
real, since, if we assume it to be strictly true and then calculate the asso
ciation of these and other associated substances, we obtain values which 
are in satisfactory accord with the values given by other methods. 

11. These deductions from the kinetic theory can be extended to solids 
and an explanation obtained for various phenomena. The more nearly 
perfectly elastic a substance is, the more nearly will it come back to its 
original position after being strained. Movement in a perfectly elastic 
solid is therefore explained by the molecules of one layer, as C in Fig. 4, 
moving up to those of another layer D, but not passing them in a single 
instance. Hence all of the energy is spent in producing a strictly limited 
amount of translational motion—the elastic limit. The energy exists as 
strain and as soon as the stress is removed, all of the work done is re
covered, so that the process is reversible. 

12. When ordinary imperfectly elastic solids are subjected to stress, 
work is done which only partly appears as strain, a part being transformed 
into heat. Finally, when the stress is removed the body does not come 
back at once to its former position. It comes back part way and then 
creeps slowly toward its old position. This is the much-discussed "elastic 
after-effect." These phenomena may be explained as follows: When 
the body is subjected to stress a few of the molecules move over each other 
but the stress is not great enough to overcome the strains throughout the 



1408 M. A. ROSANOFF. 

mass and cause general flow or rupture. Wherever the molecules flow 
over each other heat is developed as in any viscous flow. When the stress 
is removed the strain tends to become immediately removed, but wherever 
the molecules moved over one another, the removal of the strain is hindered, 
the last of the strain disappearing through viscous flow under a constantly 
diminishing stress and therefore continuing through a long interval of time. 
This after-effect has been found1 in undercooled liquids as well as solids. 

13. Finally the after-effect is increased as the temperature is raised 
in ordinary solids and this may be explained by the expansion of the sub
stance making it easier for the particles to move over each other in vis
cous flow, so that the fluidity of solids increases with the temperature as 
is true of most liquids. Guye and his co-workers2 have assumed that be
cause the vibrations in lead wires die down faster than in steel, the greater 
loss of energy in the former signifies that lead is more viscous than steel. 
Exactly the opposite conclusion seems preferable. Steel then is to be 
regarded as much more viscous than lead and for that very reason strains 
in steel are produced without nearly so much viscous flow as in lead or 
pitch. 

RICHMOND COIABGB, RICHMOND, VA. 
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IS THE DUHEM-MARGULES EQUATION DEPENDENT ON THE 
IDEAL GAS LAWS? 

Bv M. A. ROSANOFF. 

Received May 11, 1914. 

In view of the importance of the Duhem-Margules equation in the 
theory of physical mixtures, no apology is necessary for raising the question 
as to whether it is a purely thermodynamic relationship, and therefore 
reliable under all circumstances, or requires modification in form as soon 
as vapors begin to deviate from the simple gas laws. . That the latter 
is the case, would seem to be indicated by the fact that the gas laws are 
employed, at one stage or another, in every deduction of the equation 
that has been brought forward.8 But closer study leads to the opposite 
conclusion: that the Duhem-Margules equation is absolutely general, 
that it must hold as true for all actual vapors, up to the critical points, 
as it would if the vapors behaved like ideal gases. 

It is, of course, indifferent which form of thermodynamic procedure is 
1 Bams, Am. J. Sci., [3] 45, 87 (1893). 
2 Arch. sci. phys. nat., 26, 136, 263 (1906); 29, 49 (1909); 30, 133 (1910). 
* Duhem, Ann. de V&cole normale sup., |.?1 4, 9 (1887); Margules, Sitzungsbericht 

der Wiener Akademie, 104, II, 1243 (1895); Ostwald, Lehrbuch der allgemeinen Chemie, 
II, 2, pp. 636-640 (Ed. 2, Leipzig, 1902); Nernst, Theoretische Chemie, p. 115 (Ed. 7, 
Stuttgart, 1913). 


